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Abstract

Keywords

Elliptic Curve Cryptography is gaining wide acceptance as an alternative to the

conventional cryptosystems (DES, RSA, AES) which tend to be power hungry. ~ COmputational power

Elliptic Curve ciphers require less computational power, memory and  Memory
communication bandwidth giving it a clear edge over the traditional Crypto- .
Algorithms. This paper provides an overview of elliptic curves and their use in ~ Band width
cryptography. The focus is on the performance advantages to be obtained in the  Cryptography
wireless environment by using elliptic curve cryptography instead of a traditional .
cryptosystem like RSA. Specific applications to secure messaging and identity- ~ ENCryption

based encryption are discussed.

Introduction

Forecasters predict more than a trillion wireless users by
Dec. 2012. As the wireless industry explodes, it faces a
growing need for security. Applications in sectors of the
economy such as healthcare, financial services, and
government depend on the underlying security already
available in the wired computing environment. Both for
secure (authenticated, private) web transactions and for
secure (signed, encrypted) messaging, a full and
efficient public key infrastructure is needed. Three basic
choices for public key systems are available for these
applications [1-17].

RSA

Diffie-Hellman (DH) or Digital Signature Algorithm
(DSA) modulo a prime p. Elliptic Curve Diffie-
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(ECDH) or Elliptic Curve Digital Signature  Algori-
thm (DSA) modulo a prime p. Elliptic Curve Diffie-
Hellman (ECDH) or Elliptic Curve Digital Signature
Algorithm (ECDSA). RSA is a system that was publis-
hed in 1978 by Rivest, Shamir, and Adleman, based on
the difficulty of factoring large integers. Whitfield Diffie
and Martin Hellman proposed the public key system now
called Diffie-Hellman Key Exchange in 1976. DH is key
agreement and DSA is signature, and they are not
directly interchangeable, although they can be combined
to do authenticate key agreement. Both the key exchange
and digital signature algorithm are based on the difficulty
of solving the discrete logarithm problem in the
multiplicative group of integers modulo a prime p.
Elliptic curve groups were proposed in 1985 as a
substitute for the multiplicative groups modulo p in either
the DH or DSA protocols. For the same level of security
per best currently known attacks, elliptic curve-based
systems can be implemented with much smaller

parameters, leading to significant performance
advantages. Such performance improvements are
particularly important in the wireless arena where

computing power, memory, and battery life of devices
are more constrained. In this article we will highlight
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comparing their performance with  RSA in the
context of protocols from different standards. There are
various standards bodies guiding the implementation of
security protocols for the industry. Some of the
organizations involved in standards activities are the
Internet Engineering Task Force (IETF), American
Bankers Association, International Telecommuni-
cations Union (BAITU) IEEE, and National Institute of
Standards and Technology (NIST). The IETF has
working groups drafting standards for SIMIME, IP Sec,
and Transparent Layer Security (TLS). Using the
Cryptographic Message Syntax (CMS) format, SIMIME
specifies the protocols for exchanging signed encrypted
messages or email and is an alternative to PGP. IPSec is
needed to establish virtual private network connections,
and TLS isused to establish secure browser sessions.
X.509 guides the issuing of certificates on parties public
keys and their management and revocation. In the last
few years, working groups in each of these areas have
added specifications for using elliptic curve groups
through request for comment drafts. At the level of
specifying the mathematical operations underlying these
protocols, the X9 organization of the American Bankers
Association provides the standards ANSI X9.39 for
RSA and Mod p signatures, ANSI X9.62 for ECDSA
and ANSI X9.63 for ECDH. Even more specific to
elliptic curve cryptography is the IEEE P1363 published
standard for describing implementation of elliptic curve
operations. NIST provides a list of curves to be used,
specified in FIPS 186-2, Digital Signature Standard.

The focus of this paper will be to examine the impact of
using elliptic curve cryptography in S/IMIME instead.
We will provide a brief introduction to elliptic curves in
cryptography (ECC). We will give some background on
S/IMIME and summarize the protocols. We will present
our conclusions about the performance advantages to be
obtained by using elliptic curves in the wireless
environment. We will explain a new application of
elliptic curves in identity based encryption that may
help to launch deployment of a public key
infrastructure.

Elliptic curves in cryptography
History of ECC

Elliptic curves were proposed for use as the basis
for discrete logarithm-based cryptosystems almost
20 years ago, independently by Victor Miller of IBM
and Neal Koblitz of the University of Wash-
ington. At that time, elliptic curves were already
being used in various  cryptographic contexts,
suchas integer factorization and primality proving.

History of attacks

Since then, many of the top mathematicians in
algorithmic number theory have tried their hand at
attacking elliptic curve discrete log based cryptosystems,
so far to little or no avail. Successful attacks have been
found only for a few very special families of curves (e.g.,
the Menezes-Okomoto-Vanstone attack using the Weil
pairing on super singular elliptic curves). Versions of
index calculus have been tried with no success. (Index
calculus yields an attack on traditional mod p discrete log
based cryptosystems by creating a factor base of small
elements, finding relations between them, and solving a
system of linear equations). Weil descent has been
proposed for embedding elliptic curves in higher-
dimensional Abelian varieties where attacks are known,
but has not yielded a good attack on elliptic curves in
general. Currently, the best known attacks on elliptic
curve discrete log systems run in time proportional to the
square root of the group size of the elliptic curve, using
Pollard rho, Pollard kangaroo, or Baby Step Giant Step
algorithms. By comparison, much more efficient attacks
are known for both RSA and mod p discrete log-based
cryptosystems. For RSA, the attack goes via factoring
using the Number Field Sieve, and for mod p systems it
is the index calculus attacks mentioned above.

Equivalent security levels

Currently, the system parameters for an elliptic-curve-
based system can be chosen to be much smaller than the
parameters for RSA or mod p systems. For example, an
elliptic curve over a 163-bit field currentlygives the same
level of security as a 1024- bit RSA modulus or Diffie-
Hellman prime. The differ- rence becomes even more
dramatic as the desired security level increases. For
example, 571-bit ECC is currently equivalent in security
to 15, 360- bit RSA/DH/DSA. Public key protocols are
used in combination with symmetric key algorithms. The
overall strength of the system is the strength of the
weakest link. Recently the new symmetric key
predecessor. At key lengths of 128, 192 and 256, AES
has made ECC systems even AES was introduced,
providing grea- ter security than its more attractive
as a key agree- ment alternative Table 1 is found in a
number of the standard documents.

Table 1 Key sizes for equivalent security
levels (in bits).

Symmetric ECC DH/DSA/RSA
80 163 1024

128 283 3072

192 409 7680

256 571 15,360
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This growing difference in key bit length for equivalent
security levels accounts for the performance advantages
to be obtained from  substituting ECC for
RSA/DH/DSA in public key cryptographic protocols.

Role of groups in key exchange and signatures

The Diffie-Hellman Key Exchange and Digital Signature
Algorithm can be described abstractly in the mathe-
matical language of groups. A group is a set of elements
with an operation specifying how to combine two
elements to get another element of the set such that the
operation satisfies certain technical properties. When we
refer to mod groups where p is some large prime number,
we mean the set of natural numbers less than p where the
operation is multiplication taking the remainder modulo
p. A secret key exchange between two parties, A and B,
can be achieved publicly if a group G and a fixed group
element g are agreed upon, and if each generates a
random number which they keep to themselves. If A
generates the random number a and broadcasts the group
element ga and B generates the random number b and
broadcasts the group element gb the common secret will
be gab, where the notation ga means to compose the
element g with itself a times in the group. The security of
this protocol depends on the discrete log problem being
hard to solve in the given group. The discrete log problem
is given ga and g, find a.

Elliptic curve groups

For the purpose of cryptography, an elliptic curve can be
thought of as being given by an affine equation of the
form y2 = x3 + ax+b, where a and bare elements of a
finite field with pn elements, where p is a prime larger
than 3 (The equation over binary and ternary fields looks
slightly different) The set of points on the curve is the
collection of ordered pairs (x, y) with coordinates in the
field and such that x and y satisfy the relation given
by the equation defining the curve, plus an extra point
that is said to be at infinity. Coordinates in a finite field
also form a group, and the operation is as follows: to add
two points on the curve Q1 and Q2 together, pass
a straight line through them and look for the third
point of intersection with the curve, R1. Then reflect the
point R1 over the x-axisto get-R1, the sum of Q1
and Q2. Thus, Q1 + Q2 = —R1. The idea behind
this group operation is that the three points Q1, Q2,
and R1 lie on a common straight line, and the
points that form the intersection of a function
with the curve are considered to add up to be zero

(Fig 1).
Elliptic curve cryptography

To implement the Diffie-Hellman Key Exchange with an

i,
H

Q) +Q; = -Ry

Fig 1 Group law on an elliptic curve.

elliptic curve group, many iterations of the group
operation must be performed. Therefore, it is important
to optimize p the implementation of the group
operation. Many approaches have been explored, but
choices about how to optimize the elliptic curve group
operation often depend on the relative costs of
operations such as multiplication and division of
elements in the underlying field.

Affine vs projective coordinates

Suppose we represent points on an elliptic curve with
affine coordinates as described above. Then to add two
points Q1= (x1,yl)and Q2 =(x2,y2), where x12,
we first compute the slope of the line passing through
themas (2 -yl1)/ (x2—x1). This requires one division
in the underlying finite field. Then solving for the
third point of intersection of the line with the curve,
we find that —R1 =(x3,y3), where x3 =2 -x1-
x2 and y3 = (x1 — x3) — yl. So forming the sum
requires 1 division, 1 squaring, and 1 multiplication in
the underlying finite field (p when adding two affine
points with distinct x-coordinates, and ignoring the cost
of addition or subtraction in the field. Alternative
representations for an elliptic curve and the points on it
are also available. Projective and weighted projective
(also called Jacobian) coordinates are some times used,
especially in cases where division in the underlying
field is costly. Weighted projective coordinates work
with triples of coordinates (X, y, z), corresponding to
the affine coordinates (x/z2, y/z3) whenever z
projective coordinates is that point addition. On the
elliptic curve can be done in16 field multiplicat-
ions, avoiding all field divisions.

Inversion/Multiplication ratio

Field divisions in prime fields are often reported to be
roughly 80 times as costly computationally as
multiplications in the field. Such a ratio would clearly
indicate the use of weighted projective coordinates
instead of affine coordinates. However, this ratio is
obtained when taking advantage of special modular
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reduction routines that can be used when the size of the
underlying prime field has a particular form, called
generalized Mersenne primes. For arbitrary primes, where
special modular reduction is not available, field
multiplication costs are higher. Taking advantage of
Lehmer’s method can significantly cut the cost of doing
field divisions. Together these two considerations lead to
the fact that for random primes, a ratio of 5 or 10 to 1 is
reasonable. Under these circumstances, the use of affine
coordinates is warranted.

Standard techniques for fast exponentiation

Many different fast exponentiation techniques are used to
perform group exponentiations. For example, to  perform
binary exponentiation, express the exponent as a binary
string; then for each bit in the expansion, either perform a
squaring or a squaring and a multiplication with the base,
depending on whether bit 0 or 1 occurs in the expan-
sion. More sophisticated and efficient versions of the binary
method have been developed. Other methods available
involve:

1. Windowing: using some precomputed values of
the base and different “window” sizes to break
up the binary expansion of the exponent into
chunks to be processed iteratively.

2. NAF: nonadjacent form of the exponent so that
no two adjacent bits are both nonzero.

3. Compressible exponents.

For elliptic curves, the group operation is written as addition
instead of multiplication, and in that case exponentiation is
more appropriately referred to as scalar multiplication, but
the same techniques apply. For elliptic curves, the “square-
and multiply” technique described above is referred to as
double-and-add. When using affine coordinates, a field
multiplication can be saved each time a double and add
operation is performed in a scalar multiplication, leading to a
more efficient implementation of elliptic curve cryptographic
protocols for general elliptic curves. When field inversions
are more costly than 6 field multiplications, another
technique given in is beneficial. It allows one to trade
an inversion for 6 multiplications, and leads to an
efficient algorithm for tripling a point on general elliptic
curves. Finding further ways to improve elliptic curve
scalar multiplication is an active area of research.

S/IMIME overview

History

MIME stands for Multipurpose Internet Mail Extensions, a
specification for formatting messages so that they can be
sent over the Internet. MIME was initiated in 1992 by
the IETF. S/IMIME stands for Secure MIME, and provides

the following security services for electronic
messages:authentication, message integrity and non-
repudiation of origin (using digital signatures) and
privacy and data security (using encryption).

Protocol

Suppose two parties A and B wish to exchange signed
encrypted messages. Assume that A and B already
have their own public key/private key. pairs, and have
certificates on their public keys from some common
trusted certificate authority (CA). If A wants to send a
message to B, A can obtain the certificate on B’s public
key and check its validity. Then using B’s public key,
A encrypts a message to B (usually just a symmetric
key that subsequently acts as the content encryption
key). A may include data such as a message encrypted
with a symmetric key algorithm using the content
encryption key. A then signs the whole message using
its own private key. When B receives the data from A,
B first checks the certificate on A’s public key for
validity. B then uses A’s public key to verify A’s
signature on the message. B uses its own public key to
decrypt the content encryption key and uses that key to
decrypt the received data. To analyze the work load on
each party, note that the sender and receiver must
each perform three public key operations.

The sender, A, must:

* Verify 1 signature (on B’s certificate)
* Perform 1 encryption (using B’s public key)
* Sign message

The receiver, B, must:

* Verify 1 signature (on A’s certificate)
* Verify 1 signature (on A’s message)
* Perform 1 decryption (using its own private key)

Currently RSA certificates are often issued even on
elliptic curve public keys. Certificates are signed only
once but verified many times, and since only the CA
must perform the expensive RSA signing operation
using its private key, the individual parties do not incur
much computational burden in performing the RSA
signature verifications of the certificates. However,
using an elliptic curve cryptosystem to perform steps
can significantly decrease the computational burden on
the individual parties.

Performance advantages
Comparison of ECC with RSA

We will start by giving some sample timings for RSA
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and ECC on different platforms. In Table 2 rows 1, 2 are
taken from 1, and do not claim to be optimized, but show
two different platforms and are directly comparable to RSA
numbers for the same platforms. Rows 3, 4 in Table 2 are
taken from 7.

Comparison

An elliptic curve exponentiation for general curves over
arbitrary prime fields is roughly 5-15 times as fast as an
RSA private key operation, depending on the platform and
optimizations. At the 256-bit ECC/3072-bit RSA security
level the ratio has already increased to between 20 and 60,
depending on optimizations. To secure a 256-bit AES key,
ECC-521 can be expected to be on average 400 times faster
than 15,360-bit RSA.

Impact on SIMIME

For example, if elliptic curve cryptosystems are used in
the S/IMIME protocol for signing and encryption, the sender
will perform an ECDSA signature and an ECDH key
agreement operation.

Table 2 Sample elliptic curve exponentiation timings
over prime fields (in milliseconds).

Processor M 16 19 25 38 52
Hz  3-bit 2-bit 6-bit 4-bit  1-bit

Ultra 450 6.1 8.7 -- -- --
SPARC I

Strong 200 229 377 -- -- --
ARM

Pentium Il 400  -- 18.3 424 1364 3104
Pentium Il 400  -- 2.1 51 164 278

Table 3 Sample RSA encrypt/decrypt timings
(in milliseconds).

Processor MH 1024- 1024-  2048- 2048-
z RSA RSAe RSA; RSAe

Ultra 450 321 17 2055 6.1
SPARC Il

ﬁﬂ”ongAR 200 1887 108 12738  39.1
Pentiumll 1 12070 1180 - -

instead of an RSA signature and an RSA encryption. For the
purpose of mobile communication, a strong ARM 200 MHz
processor can be thought of as a typical device. Without
assuming an optimized version of ECC, use row 2 of the
ECC table instead of row 4. On such a device, at the current
minimum 1024-bit security level, the difference in the

computation time for the sender per message is
roughly 47 ms instead of 200 ms. For the recipient of
a message, it would mean performing an ECDSA
signature verification and an ECDH operation instead
of an RSA signature verification and an RSA ference
would be about 79 ms instead of 200 ms/message.
Using the optimized versions of ECC quoted in row 4,
the costs for the sender and receiver per message can
be cut to roughly 8 and 12 ms. At higher security
levels (e.g., for keying AES-256), RSA operations
will be far too costly computationally for such a small
device (roughly 45 s for sender and receiver per
message), whereas ECC will cost instead roughly 56
ms for the sender per message and 84 ms for the
receiver per message.

Conclusions

Over the last five years, elliptic curve cryptography
has moved from being an interesting theoretical
alternative to being a cutting edge technology adopted
by an increasing number of companies. There are two
reasons for this new development one is that ECC is
no longer new and has withstood a generation of
attacks;second, in the growing wireless industry, its
advantages over RSA have made it an attractive
security alternative.Wireless Internet mail industry
leaders such as Qualcomm have embraced ECC, as
well as other major companies in the wireless industry
such as Motorola, Docomo, and RIM. Major
computer companies such as IBM, Sun
Microsystems, Microsoft, and Hewlett-Packard are all
investing in ECC. The U.S. government is backing
the use of ECC as well, with NSA creating the

security requirements for wireless devices
connecting companies such as Gemplus are also
using ECC to improve their products’ security.

Wireless devices are rapidly becoming  more
dependent on security features. Such as the ability
to do secure email, secure Web browsing, and
virtual private networking to corporate networks,
and ECC allows more efficient implementation of
all of these features.
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