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Abstract 

 
Elliptic Curve Cryptography is gaining wide acceptance as an alternative to the 

conventional cryptosystems (DES, RSA, AES) which tend to be power hungry. 

Elliptic Curve ciphers require less computational power, memory and 

communication bandwidth giving it a clear edge over the traditional Crypto- 

Algorithms. This paper provides an overview of elliptic curves and their use in 

cryptography. The focus is on the performance advantages to be obtained in the 

wireless environment by using elliptic curve cryptography instead of a traditional 

cryptosystem like RSA. Specific applications to secure messaging and identity- 

based encryption are discussed. 
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Introduction 

 

Forecasters predict more than a trillion wireless users by 

Dec. 2012. As the wireless industry explodes, it faces a 

growing need for security. Applications in sectors of the 

economy such as healthcare, financial services, and 

government depend on the underlying security already 

available in the wired computing environment. Both for 

secure (authenticated, private) web transactions and for 

secure (signed, encrypted) messaging, a full and 

efficient public key infrastructure is needed. Three basic 

choices for public key systems are available for these 

applications [1-17]. 

 

RSA 

Diffie-Hellman (DH) or Digital Signature Algorithm 

(DSA) modulo   a    prime    p.  Elliptic   Curve   Diffie- 

 

(ECDH) or  Elliptic  Curve  Digital Signature      Algori- 

thm  (DSA)   modulo   a   prime p. Elliptic Curve Diffie-

Hellman (ECDH) or Elliptic Curve  Digital Signature 

Algorithm (ECDSA). RSA is a system that was publis- 

hed in 1978 by Rivest, Shamir, and Adleman, based on 

the difficulty of factoring large integers. Whitfield Diffie 

and Martin Hellman proposed the public key system now 

called Diffie-Hellman Key Exchange in 1976. DH is key 

agreement and DSA is signature, and they are not 

directly interchangeable, although they can be combined 

to do authenticate key agreement. Both the key exchange 

and digital signature algorithm are based on the difficulty 

of solving the discrete logarithm problem in the 

multiplicative group of integers modulo a prime p. 

Elliptic curve groups were proposed in 1985 as a 

substitute for the multiplicative groups modulo p in either 

the DH or DSA protocols. For the same level of security 

per best currently known attacks, elliptic curve-based 

systems can be implemented with much smaller 

parameters, leading to significant performance 

advantages. Such performance improvements are 

particularly   important   in   the  wireless  arena  where 

computing  power,  memory, and  battery life of  devices 

are  more  constrained.  In  this  article  we  will highlight 
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comparing  their  performance  with   RSA in the  

context of protocols from  different standards. There are 

various standards bodies guiding the implementation of 

security protocols for the industry. Some of the 

organizations involved in standards activities are the 

Internet Engineering Task Force (IETF), American 

Bankers Association, International Telecommuni-

cations Union (BAITU)  IEEE, and National Institute of 

Standards and Technology (NIST). The IETF has 

working groups drafting standards for S/MIME, IP Sec, 

and Transparent Layer Security (TLS). Using the 

Cryptographic Message Syntax (CMS) format, S/MIME  

specifies the  protocols for exchanging signed encrypted 

messages or email and is an alternative to PGP. IPSec is 

needed to establish virtual private network connections, 

and TLS isused to establish secure browser sessions. 

X.509 guides the issuing of certificates on parties public 

keys and their management and revocation. In the last 

few years, working groups in each of these areas have 

added specifications for using elliptic curve groups 

through request for comment drafts. At the level of 

specifying the mathematical operations underlying these 

protocols, the X9 organization of the American Bankers 

Association provides the standards ANSI X9.39 for 

RSA and Mod p signatures, ANSI X9.62 for ECDSA 

and ANSI X9.63 for ECDH. Even more specific to 

elliptic curve cryptography is the IEEE P1363 published 

standard for describing implementation of elliptic curve 

operations. NIST provides a list of curves to be used, 

specified in  FIPS  186-2,  Digital  Signature  Standard. 

 

The focus of this paper will be to examine the impact of 

using elliptic curve cryptography in S/MIME instead. 

We will provide a brief introduction to elliptic curves in 

cryptography (ECC). We will give some background on 

S/MIME and summarize the protocols. We will present 

our conclusions about the performance advantages to be 

obtained by using elliptic curves in the wireless 

environment. We will explain a new application of 

elliptic curves in identity based encryption that may 

help to launch deployment of a public key 

infrastructure. 

 

Elliptic curves in cryptography 
 

History of ECC 

 

Elliptic  curves  were  proposed  for  use  as  the  basis 

for  discrete  logarithm-based  cryptosystems  almost  

20 years ago, independently by Victor Miller of IBM 

and Neal  Koblitz  of   the   University  of  Wash- 

ington.    At that time,  elliptic  curves  were   already     

being    used in   various    cryptographic   contexts,    

suchas    integer factorization   and   primality   proving. 

 

 

 
 

History of attacks 

 

Since then, many of the top mathematicians in 

algorithmic number theory have tried their hand at 

attacking elliptic curve discrete log based cryptosystems, 

so far to little or no avail. Successful attacks have been 

found only for a few very special families of curves (e.g., 

the Menezes-Okomoto-Vanstone attack using the Weil 

pairing on super singular elliptic curves). Versions of 

index calculus have been tried with no success. (Index 

calculus yields an attack on traditional mod p discrete log 

based cryptosystems by creating a factor base of small 

elements, finding relations between them, and solving a 

system of linear equations). Weil descent has been 

proposed for embedding elliptic curves in higher-

dimensional Abelian varieties where attacks are known, 

but has not yielded a good attack on elliptic curves in 

general. Currently, the best known attacks on elliptic 

curve discrete log systems run in time proportional to the 

square root of the group size of the elliptic curve, using 

Pollard rho, Pollard kangaroo, or Baby Step Giant Step 

algorithms. By comparison, much more efficient attacks 

are known for both RSA and mod p discrete log-based 

cryptosystems. For RSA, the attack goes via factoring 

using the Number Field Sieve, and for mod p systems it 

is the index calculus attacks mentioned above.  

 

Equivalent security levels 

 
Currently, the system  parameters for an elliptic-curve-

based  system can be chosen to be much smaller than the 

parameters for RSA or mod p systems. For example, an 

elliptic curve over a 163-bit field currentlygives the same 

level of security as a 1024- bit RSA modulus or  Diffie-

Hellman  prime.  The differ- rence becomes even more 

dramatic as the desired security level increases. For 

example, 571-bit ECC is currently equivalent in security 

to 15, 360-  bit   RSA/DH/DSA. Public key protocols are 

used in combination with symmetric key algorithms. The 

overall strength of the system is the strength of the 

weakest link. Recently the new symmetric key 

predecessor.  At key lengths of 128, 192  and 256,  AES  

has  made ECC systems even  AES was  introduced, 

providing grea- ter security   than  its   more  attractive  

as  a  key agree- ment  alternative Table 1 is found in a 

number of the  standard documents. 

 

Table 1 Key sizes for equivalent security 

 levels (in bits). 

Symmetric ECC DH/DSA/RSA 

80 163 1024 

128 283 3072 

192 409 7680 

256 571 15,360 
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This growing difference in key bit length for equivalent 

security levels accounts for the performance advantages 

to be     obtained   from  substituting ECC for 

RSA/DH/DSA in public key cryptographic protocols. 
 

Role of groups in key exchange and signatures 

 
The Diffie-Hellman Key Exchange and Digital Signature 

Algorithm  can be described abstractly in the mathe- 

matical language of groups. A group is a set of elements 

with an operation specifying how to combine two 

elements to get another element of the set such that the 

operation satisfies certain technical properties. When we 

refer to mod groups where p is some large prime number, 

we mean the set of natural numbers less than p where the 

operation is multiplication taking the remainder modulo 

p. A secret key exchange between two parties, A and B, 

can be achieved publicly if a group G and a fixed group 

element g are agreed upon, and if each generates a 

random number which they keep to themselves. If A 

generates the random number a and broadcasts the group 

element ga and B generates the random number b and 

broadcasts the group element gb the common secret will 

be gab, where the notation ga means to compose the 

element g with itself a times in the group. The security of 

this protocol depends on the discrete log problem being 

hard to solve in the given group. The discrete log problem 

is given ga and g, find a. 
 

Elliptic curve groups 

 
For the purpose of cryptography, an elliptic curve can be 
thought of as being given by an affine equation of the 

form y2 = x3 + ax+b, where a and bare elements of a 

finite field with pn elements, where p is a prime larger 

than 3 (The equation over binary and ternary fields looks 

slightly different) The set of points on the curve is the 

collection of ordered pairs (x, y) with coordinates in the 

field and  such  that  x  and  y  satisfy the relation given 

by the equation defining the curve, plus an extra point 

that is said to be at infinity. Coordinates in a finite field 

also form a group,  and the operation is as  follows: to add 

two   points  on  the  curve  Q1  and  Q2   together,  pass   

a  straight  line  through  them   and  look   for  the third 

point of intersection with the curve, R1. Then reflect the 

point R1  over the  x-axis to  get–R1,   the   sum  of   Q1  

and  Q2.   Thus,   Q1  +  Q2  =  –R1. The  idea  behind 

this   group   operation  is  that  the  three  points Q1, Q2, 

and R1  lie  on  a  common   straight    line,   and   the  

points that   form   the   intersection   of    a    function   

with the curve are  considered  to  add  up  to  be  zero     

(Fig  1). 

 

Elliptic curve  cryptography 
 

To implement the Diffie-Hellman Key Exchange with an  
  

 

 
 

Fig  1  Group law on an elliptic curve. 

 
elliptic curve group, many iterations of the group 

operation must be performed. Therefore, it is important 

to optimize p the implementation of the group 

operation. Many approaches have been explored, but 

choices about how to optimize the elliptic curve group 

operation often depend on the relative costs of 

operations such as multiplication and division of 

elements in the underlying field. 

 

Affine vs  projective coordinates 

 

Suppose we represent points on an elliptic curve with 

affine coordinates as described above. Then to add two 

points    Q1 = (x1, y1) and   Q2 =(x2, y2), where    x1 2, 

we   first   compute the slope of the line passing through 

them as  (2 – y1)/   (x2– x1). This requires  one division 

in the underlying finite field.  Then solving  for the    

third point of intersection of the   line with  the   curve, 

we   find  that     –R1  = (x3, y3), where x3 = 2 – x1 – 

x2 and y3 = (x1 – x3)  – y1. So forming the sum 

requires 1 division, 1 squaring, and 1 multiplication in 

the underlying finite field (p when adding two affine 

points with distinct x-coordinates, and ignoring the cost 

of addition or subtraction in the field. Alternative 

representations for an elliptic curve and the points on it 

are also available. Projective and weighted projective 

(also called Jacobian) coordinates are some  times used, 

especially in cases where division in the underlying  

field  is  costly. Weighted  projective coordinates work 

with triples of coordinates (x, y, z), corresponding to 

the affine coordinates (x/z2, y/z3) whenever  z   

projective   coordinates  is   that point addition. On   the   

elliptic   curve   can   be  done  in 16  field   multiplicat- 

ions, avoiding all field divisions. 

 

Inversion/Multiplication ratio 

 
Field divisions in prime fields are often reported to be 

roughly 80 times as costly computationally as 

multiplications in the field. Such a ratio would clearly 

indicate the use of weighted projective coordinates 

instead of affine coordinates. However, this ratio is 

obtained   when  taking  advantage  of  special  modular  
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reduction routines that can be used when the  size of the 

underlying prime field has a particular form, called 

generalized Mersenne primes. For arbitrary primes, where 

special modular reduction is not available, field 

multiplication costs are higher. Taking advantage of 

Lehmer’s method can significantly cut the cost of doing 

field divisions. Together these two considerations lead to 

the fact that for random primes, a ratio of 5 or 10 to 1 is 

reasonable. Under these circumstances, the use of affine 

coordinates is warranted. 

 
Standard techniques for fast exponentiation 

 

Many different fast exponentiation techniques are used to   

perform group exponentiations. For example, to   perform 

binary exponentiation, express the exponent as a binary   

string;   then for each bit in the expansion, either perform a 

squaring or a squaring and a   multiplication with the base, 

depending on   whether   bit 0 or   1 occurs in the expan- 

sion. More sophisticated and efficient versions of the binary 

method have been developed. Other methods available 

involve: 

 

1. Windowing: using some precomputed values of 

the base and different “window” sizes to break 

up the binary expansion of the exponent into 

chunks to be processed iteratively. 

2. NAF: nonadjacent form of the exponent so that 

no two adjacent bits are both nonzero. 

3. Compressible exponents. 

 

For elliptic curves, the group operation is written as addition 

instead of multiplication, and in that case exponentiation is 

more appropriately referred to as scalar multiplication, but 

the same techniques apply. For elliptic curves, the “square-

and multiply” technique  described  above  is  referred to    as 

double-and-add.  When using affine   coordinates,  a  field 

multiplication can be saved each time a double and add 

operation is performed in a scalar multiplication, leading to a 

more efficient implementation of elliptic curve cryptographic 

protocols for  general  elliptic  curves.  When field inversions 

are more costly than 6 field multiplications, another     

technique given   in  is   beneficial.  It  allows   one to  trade  

an   inversion   for  6   multiplications,  and  leads  to  an  

efficient  algorithm  for tripling a point on general elliptic 

curves. Finding further ways to improve elliptic  curve  

scalar    multiplication    is    an    active    area   of   research. 

 

S/MIME overview 

History 

MIME stands for Multipurpose Internet Mail Extensions, a 

specification for formatting messages so that they can be  

sent over the Internet. MIME was initiated in 1992 by                

the IETF.  S/MIME  stands for Secure MIME,  and  provides       

 

the following  security   services   for   electronic   

messages:authentication, message integrity and non-

repudiation of origin (using digital signatures) and 

privacy and data security (using encryption). 

 

Protocol 

 
Suppose two parties A and B wish to exchange signed 

encrypted messages. Assume that A and B already 

have their own public key/private key. pairs, and have 

certificates on their public keys from some common 

trusted certificate authority (CA). If A wants to send a 

message to B, A can obtain the certificate on B’s public 

key and check its validity. Then using B’s public key, 

A encrypts a message to B (usually just a symmetric 

key that subsequently acts as the content encryption 

key). A may include data such as a message encrypted 

with a symmetric key algorithm using the content 

encryption key. A then signs the whole message using 

its own private key. When B receives the data from A, 

B first checks the certificate on A’s public key for 

validity. B then uses A’s public key to verify A’s 

signature on the message. B uses its own public key to 

decrypt the content encryption key and uses that key to 

decrypt the received data. To analyze the work load on 

each party, note that the  sender and receiver  must 

each perform three   public   key   operations.   

 

The   sender,  A,  must: 

 
* Verify 1 signature (on B’s certificate) 

* Perform 1 encryption (using B’s public key) 

* Sign message  

 

The receiver, B, must: 

 

* Verify 1 signature (on A’s certificate) 

* Verify 1 signature (on A’s message) 

* Perform 1 decryption (using its own private key) 

 

Currently RSA certificates are often issued even on 

elliptic curve public keys. Certificates are signed only 

once but verified many times, and since only the CA 

must perform the expensive RSA signing operation 

using its private key, the individual parties do not incur 

much computational burden in performing the RSA 

signature verifications of the certificates. However, 

using an elliptic curve cryptosystem to perform steps 

can significantly decrease the computational burden on 

the individual parties. 

 

Performance advantages 
 

Comparison of ECC with RSA 

 
We  will  start  by giving some sample timings for RSA  
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and ECC on different platforms. In Table 2 rows 1, 2 are 

taken from 1, and do not claim to be optimized, but show 

two different platforms and are directly comparable to RSA 

numbers for the same platforms. Rows 3, 4 in Table 2 are 

taken from 7.  

 

Comparison 

 
An elliptic curve exponentiation for general curves over 

arbitrary prime fields is roughly 5-15 times as fast as an 

RSA private key operation, depending on the platform and 

optimizations. At the 256-bit ECC/3072-bit RSA security 

level the ratio has already increased to between 20 and 60, 

depending on optimizations. To secure a 256-bit AES key, 

ECC-521 can be expected to be on average 400 times faster 

than 15,360-bit RSA. 

 

Impact on S/MIME 

 

For example,  if  elliptic  curve cryptosystems  are  used  in 

the S/MIME protocol for signing and encryption, the sender 

will perform an ECDSA signature and an ECDH key 

agreement operation. 

 
Table  2  Sample  elliptic  curve  exponentiation timings 

over prime fields (in milliseconds). 

 
Processor M 16 19 25 38 52 

 Hz 3-bit 2-bit 6-bit 4-bit 1-bit 

Ultra 

SPARC II 

450 6.1 8.7  --    --    -- 

Strong 

ARM 

200 22.9 37.7   --    --     -- 

Pentium II 400   -- 18.3 42.4 136.4 310.4 

Pentium II 400   -- 2.1 5.1 16.4 27.8 

 

Table 3 Sample RSA encrypt/decrypt timings  

(in milliseconds). 

 
Process or MH

z 

1024- 

RSAd 

1024- 

RSAe 

2048- 

RSAd 

2048-

RSAe 

Ultra 

SPARC II 
450 32.1 1.7 205.5  6.1   

StrongAR

M 
200 188.7 10.8 1273.8   39.1 

Pentium II 1 12,070  1180     --     -- 

 

instead of an RSA signature and an RSA encryption. For the  

purpose of mobile communication, a strong ARM 200 MHz 

processor can be thought of as a typical device. Without 

assuming an optimized version of  ECC, use row 2 of the 

ECC table instead of row 4. On such a device, at the current 

minimum   1024-bit   security  level,  the  difference  in  the 
 

computation time for the sender per message is 

roughly 47 ms instead of 200 ms. For the recipient of 

a message, it would mean performing an ECDSA 

signature verification and an ECDH operation instead 

of an RSA signature verification and an RSA ference 

would be about 79 ms instead of 200 ms/message. 

Using the optimized versions of ECC quoted in row 4, 

the costs for the sender and receiver per message can 

be cut to roughly 8 and 12 ms. At higher security 

levels (e.g., for keying AES-256), RSA operations 

will be far too costly computationally for such a small 

device (roughly 45 s for sender and receiver per 

message), whereas ECC will cost instead roughly 56 

ms for the sender per message and 84 ms for the 

receiver per message. 

 

Conclusions 

 
Over the last five years, elliptic curve cryptography 

has moved from being an interesting theoretical 

alternative to being a cutting edge technology adopted 

by an increasing number of companies. There are two 

reasons for this new development one is that  ECC is 

no longer new and has withstood a generation of 

attacks;second, in the growing wireless industry, its 

advantages  over RSA have made it an attractive 

security alternative.Wireless Internet mail industry 

leaders such as Qualcomm  have embraced ECC, as 

well as other major companies in the wireless industry 

such as Motorola, Docomo, and  RIM. Major 

computer companies such as IBM, Sun  

Microsystems, Microsoft, and Hewlett-Packard are all  

investing in ECC. The U.S. government  is backing 

the use of  ECC as  well,  with  NSA  creating  the  

security requirements for   wireless   devices   

connecting   companies   such  as Gemplus are also 

using ECC to  improve their products’  security. 

Wireless devices are rapidly becoming  more  

dependent on security  features.  Such  as the  ability  

to  do  secure  email,  secure Web browsing, and 

virtual private  networking to corporate  networks,  

and  ECC allows  more  efficient implementation  of 

all of these features. 
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